

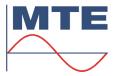
MTE Meter Test Equipment

HYDROCAL 1008

Система Многостороннего Анализа Газов в Масле с Функциями Мониторинга Трансформатора

Анализатор газов HYDROCAL 1008 — это перманентно устанавливаемая система многостороннего анализа газа в масле с функциями мониторинга трансформатора. Анализатор производит индивидуальное измерение влаги и ключевых газов, таких как водород (H_2), монооксид углерода (CO_1), диоксид углерода (CO_2), метан (CH_4), ацетилен (C_2H_2), этилен (C_2H_4) и этан (C_2H_6), растворенных в масле трансформатора.

Присутствие водорода (H_2) свидетельствует о большинстве проблем изоляционной системы силовых трансформаторов, монооксид углерода (CO) является признаком повреждения бумажной изоляции, присутствие и повышение содержания ацетилена (C_2H_2) и этилена (C_2H_4) определяет природу неполадки как перегрев, возникновение частичных разрядов или образование дуги высокого напряжения. Анализатор газов может служить компактной системой мониторинга трансформатора путем интегрирования / присоединения других датчиков, находящихся на трансформаторе, через аналоговые входы:


- 4 аналоговых входа 0/4-20 мА DC
- 6 аналоговых входов 0/4-20 мА АС +20% или 0 ... 80 В АС +20% (конфигурируются перемычками)

Анализатор газов также оснащен цифровыми выходами для передачи тревожной сигнализации или выполнения функций управления. (например, управление системой охлаждения трансформатора):

- 5 цифровых выходных реле
- 5 цифровых оптопар (опция)

• Основные преимущества

- Измерение содержания водорода (H₂), монооксида углерода (CO), диоксида углерода (CO₂), метана (CH₄), ацетилена (C₂H₂), этилена (C₂H₄) и этана (C₂H₆)
- Измерение содержания влаги (H₂O) в масле
- Простой монтаж на клапане трансформатора (G 1½" DIN ISO 228-1 или 1½" NPT ANSI B 1.20.1)
- Установка на работающем трансформаторе без вывода из эксплуатации
- Программное обеспечение с дополнительными функциями (на устройстве и ПК)
- Не требуется периодическое обслуживание
- Коммуникационные интерфейсы ETHERNET 10/100
 Мбит/с (медный / RJ45 или оптоволоконный / SC Duplex) и
 RS 485 с поддержкой собственного коммуникационного
 протокола и MODBUS®RTU/ASCII, MODBUS®TCP, DNP3,
 а также MЭК 61850
- Опциональный модем с программным стеком DNP3 для подключения к АСУ ТП
- Опциональный модем с программным стеком 61850 для подключения к АСУ ТП
- Подключение посредством коммуникационного интерфейса дополнительных датчиков для контроля высоковольтных и низковольтных вводов

Функции мониторинга трансформатора

Напряжения и токи

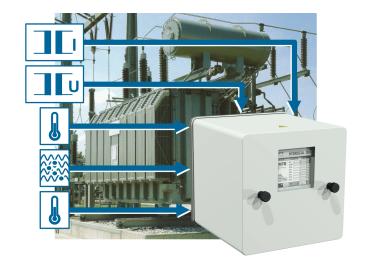
(через трансформаторы / преобразователи тока и напряжения)

Контроль температуры

Температура масла верхней и нижней части бака трансформатора (через дополнительные температурные датчики)

Охлаждаемая ступень / Положение переключателя ответвлений (напр. через преобразователь тока)

Свободно программируемые входы


Аналоговые входы могут быть запрограммированы для подключения любых дополнительных датчиков

Дополнительные расчеты:

Точка перегрева (по МЭК 60076) Потеря ресурса

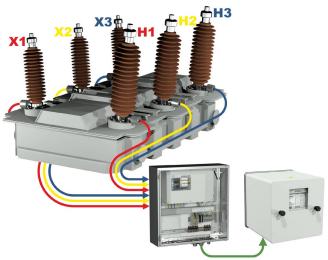
Скорость старения

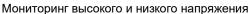
Совместная разработка PAULERS Бельгия

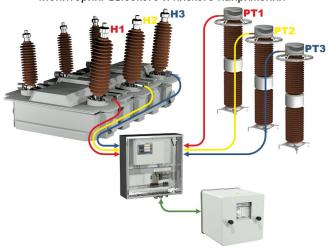
Мониторинг НВ и ВВ вводов (опция)

HYDROCAL BPD — это модульная система онлайн-мониторинга высоковольтных вводов. Она поддерживает измерение напряжения и фазового угла на измерительном выводе (ПИН) для расчета тангенса угла потерь, емкости C1.

HYDROCAL BPD можно комбинировать с другими моделями HYDROCAL, предпочтительно HYDROCAL genX, для создания комплексной системы мониторинга.


Согласно рабочей группе CIGRÉ A2.37 вводы представляют собой вторую по величине группу мест повреждения трансформатора (около 25%) после обмоток (43%) и больше, чем в РПН (23%). Таким образом, мониторинг вводов может помочь снизить количество таких отказов.


HYDROCAL BPD в сочетании с онлайн APГ, выполняемым семейством продуктов HYDROCAL, обеспечивает идеальное комплексное решение для мониторинга трансформаторов.


Измерение напряжения и фазового угла на измерительном выводе высоковольтных вводов позволяет сравнить $tan \delta/PF$ с результатами заводских испытаний для анализа износа вводов.

Основные преимущества

- Контроль емкости, tanδ/PF до шести высоковольтных вводов (от 1 до 6 вводов)
- Усовершенствованное программное обеспечение (на устройстве и ПК) с интуитивно понятным управлением с помощью 7-дюймового цветного сенсорного экрана ТFT, беспроводной локальной сети и через веб-сервер с любого смартфона, планшета или ноутбука
- Интерфейсы связи WiFi, USB или ETHERNET 10/100 Мбит/с
- SD-память результатов испытаний, истории и данных диагностики силовых трансформаторов
- Не требует периодического обслуживания

Эталонный ёмкостный трансформатор напряжения

Основное меню микропрограммы

1 Статус извлечения

 Показывает фактическое рабочее состояние устройства

2 Значения газ в масле

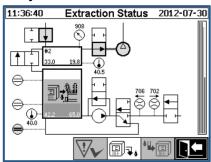
- Гистограмма
- График тренда
- Табличные данные

3 Дополнительные измерения

- График тренда
- Табличные данные (в разработке)

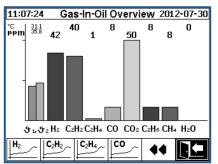
4 Измерения дополнительных датчиков

- График тренда
- Табличные данные (в разработке)

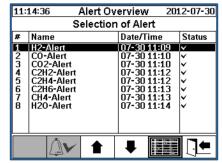

5 Аварийные сигналы

- Подтверждение сигнала
- Табличные данные сигналов

6 Настройка прибора


- Настройка уровней аварийных сигналов
- Настройка связи
- Установки трансформатора
- Установки входов и выходов

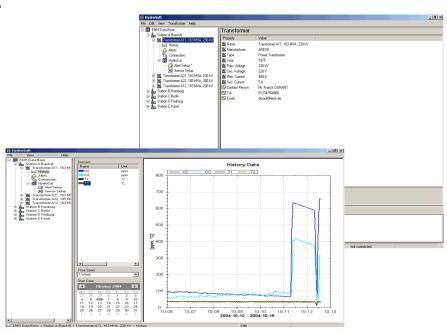
Статус извлечения


Показывает актуальный статус процесса и информацию функций безопасности

Меню газ-в-масле

Индивидуальная диаграмма для водорода (H_2) , монооксида углерода (CO), диоксида углерода (CO_2) , метана (CH_4) , ацетилена (C_2H_2) , этилена (C_2H_4) и этана (C_2H_6) , влаги (H_2O) в масле и температуры.

Обзор аварийных сигналов



Дисплей списка аварийных сигналов. Показаны детали каждого сигнала и индивидуальные уставки.

Программное обеспечение ПК

Основные свойства программы

- Конфигурация и администрация каждого индивидуального анализатора газов HYDROCAL
- Считывание данных и конфигурации анализаторов газов HYDROCAL
- Обработка и представление считанных данных (в виде тренда или таблицы)
- Функции онлайн (онлайн показания датчиков, статус извлечения и технологический процесс)
- Функции диагностики (треугольник Дюваля)
- Дальнейшая обработка данных (Excel, CSV, буфер обмена и распечатка)
- Сохранение обработанных данных и конфигурация анализатора газов
- Автоматическое считывание и отправка аварийных сигналов по email

Технические данные HYDROCAL 1008

Общие

120 В -20% +15% AC 50/60 Гц $^{\rm 1)}$ или 230 В -20% +15% AC 50/60 Гц $^{\rm 1)}$ или 120 В -20% +15% DC $^{\rm 1)}$ или Дополнительное питание:

230 B -20% +15% DC ¹⁾

Другие напряжения по запросу!

Энергопотребление: макс. 600 ВА Корпус: Алюминий

Габариты: (Ш) 263 х (В) 274 х (Г) 331 мм

Bec: Прибл. 15 кг. Рабочая температура: -55°C ... +55°C

(внешней среды) температуре -10°C ниже информация на дисплее может не

отображаться) -20°C ... +90°C

Температура масла: (внутри трансформатора)

Давление масла: 0-800 кПа (вакуум допускается)

Подключение к клапану: G 11/2" DIN ISO 228-1 или NPT ANSI B 1.20.1

Безопасность ϵ

МЭК 61010-1 Защитная изоляция: IP-55 Степень защиты:

Измерения

измерения		
Измерение газа/влаги в масле		
Измеряемая величина	Диапазон	Погрешность 2) 3)
Водород Н₂	0 2.000 ppm	± 15 % ± 25 ppm
Монооксид углерода СО	0 5.000 ppm	± 20 % ± 25 ppm
Диоксид углерода CO₂	0 20.000 ppm	± 20 % ± 25 ppm
Метан СН4	0 2.000 ppm	± 20 % ± 25 ppm
Ацетилен C ₂ H ₂	0 2.000 ppm	± 20 % ± 5 ppm
Этилен С₂Н₄	0 2.000 ppm	± 20 % ± 10 ppm
Этан С₂Н₅	0 2.000 ppm	± 20 % ± 15 ppm
Влага H ₂ O _(аw)	0 100 %	± 3 %
Влага в минеральном масле	0 100 ppm	± 3 % ± 3 ppm
Влага в синтетическом эфире ⁵⁾	0 2.000 ppm	± 3 % of MSC ⁶⁾

⁵⁾ Опция ⁶⁾содержание влаги

Принцип действия

- Забор уменьшенных проб газа на основании принципа газового пространства (без мембраны, защита от отрицательного давления)
- Система забора проб масла, в отношении которой подана заявка на патент (ЕР 1 950 560 А1)
- Датчик ближнего инфракрасного диапазона для определения СО, C_2H_2 и C_2H_4
- ближнего Датчик инфракрасного диапазона для определения СО2, СН4 и С2Н6
- Микроэлектронный датчик газа для Н2
- Тонкопленочный емкостной датчик воды H₂O
- Датчики температуры (для температуры масла и газа)

Аналоговые и цифровые выходы (стандартные)

8 х аналоговых выходов постоянного тока		Концентрация по умолчанию
Тип	Диапазон	
Постоянный ток	0/4 20 мА DC	Водород Н2
Постоянный ток	0/4 20 мА DC	Ацетилен C ₂ H ₂
Постоянный ток	0/4 20 мА DC	Этилен С2Н4
Постоянный ток	0/4 20 мА DC	Монооксид углерода СО
Постоянный ток	0/4 20 мА DC	Влага в масле H₂O
Постоянный ток	0/4 20 мА DC	Диоксид углерода СО
Постоянный ток	0/4 20 мА DC	Этан С₂H ₆
Постоянный ток	0/4 20 мА DC	Метан СН₄

8 х цифровых выходов		Макс. переключающая	
Тип		Управляющее напряжение	способность (свободное назначение)
Реле		12 B DC	220 В DC/В АС / 2 А / 60 Вт

Аналоговые входы и цифровые выходы (опция)

		,	
6 х аналоговых вхо переменного тока	дов	Погрешност ь	Примечания
Тип	Диапазон	измеряемо	го значения
6 х токовых АС	0/4 20 мА +20%	≤ 1,0 %	Изменяется
или	или		перемычкой
6 х напряжения АС	0 80 B +20%		4)

4 х аналоговых вхо	да	Погрешност ь	Примечания
Тип	Диапазон	измеряемо	го значения
4 х токовых DC	0/4 20 мА DC	≤ 0,5 %	

5 х цифровых выходов		Макс. переключающая
Тип	Управляющее напряжение	способность (свободное назначение)
5 х оптронов	5 B DC	U _{CE} : 4 В (ном.) / 35 В (макс) U _{EC} : 7 В (макс) U _{CF} : 40 мА (макс)

Связь

- RS 485 (протокол собственный или MODBUS® RTU/ASCII)
- ETHERNET 10/100 Мбит/с медный провод / RJ 45 или оптоволоконный / SC дуплекс (протокол собственный или MODBUS® TCP)
- Программный стек модема DNP3 (опция)
- Программный стек модема 61850 (опция)

Примечания

1) **120 B** ⇒ 120 B -20% = **96 B**_{мин} 120 B +15% = 138 B_{макс} 230 В +15% = **264 В**макс 230 B ⇒ 230 B -20% = 184 B_{мин}

- ²⁾ При внешней температуре +20°C и температуре масла +55°C
- ³⁾ Погрешность для воды в масле для минеральных типов масла
- 4) Конфигурация перемычки по умолчанию: ток

